Sum of Arithmetic Sequence.

$$
\begin{aligned}
S_{n}=\sum_{k=1}^{n} a_{k} & =\frac{n}{2} \underline{(1 s t+1 a s t)} \\
& \frac{n\left(a_{1}+a_{n}\right)}{2}
\end{aligned}
$$

$$
+d+d+d+d+\frac{d}{a_{5}}
$$

$$
\begin{aligned}
a_{5} & =a_{1}+4 d \\
a_{10} & =a_{1}+9 d \\
a_{10} & =a_{4}+\stackrel{?}{=} d \\
- & -\frac{10-4)}{a_{4}} 1-1-1-1-1-1 \frac{1}{a_{10}}
\end{aligned}
$$

$$
a_{4}+6 d=a_{10}
$$

Book $a_{10}=a_{4}+6 d$
Arithmetic

$$
\begin{gathered}
--\frac{7}{a_{4}} \frac{9}{a_{5}} \cdots=\frac{31}{a_{16}} \\
d=2 \quad 9-7=2 \\
d=\text { Right }- \text { left } \\
a_{12}=a_{5}+7 d \\
2=9+7(2) \\
23 \\
12-5=7
\end{gathered}
$$

Ar, thetic

$$
\begin{array}{rlr}
a_{n} & =a_{1}+(n-1) d & S_{n}=\left(\frac{1 s t+\text { last }}{2}\right) n \\
a_{n} & =a_{k}+(n-k) d & \frac{n}{2}(\text { pst last }) \\
d & =\text { right }- \text { left } & \frac{n\left(a_{1}+a_{n}\right)}{2}
\end{array}
$$

$12 \cdot 3$

$$
21-35 ; 38-42
$$

