Exponents and Radicals.

$$
\begin{aligned}
& x^{4}=x \cdot x \cdot x \cdot x \\
& 2^{5}=2 \cdot 2 \cdot 2 \cdot 2 \cdot 2=32 \\
& \left(\frac{2}{3}\right)^{7}=\frac{2^{7}}{3^{7}}=\frac{128}{2187}
\end{aligned}
$$

$$
\begin{aligned}
(3 x)^{4} & =3^{4} \cdot x^{4} \\
& =81 x^{4}
\end{aligned}
$$

$$
\begin{aligned}
&\left(4 x^{3}\right)^{2}= 4 \cdot 4-x^{3} \cdot x^{3} \\
& 16 x^{6}
\end{aligned}
$$

$$
\left(4 x^{3}\right)^{7}=16,384 x^{21}
$$

$$
\left.\begin{array}{c}
\text { Know: } \\
4^{4^{3}}=64 \\
2^{3}=64 \quad=8 \\
8^{2}=64
\end{array}\right] \begin{aligned}
&\left(2 x^{7}\right)^{3}=2^{3} \cdot x^{7} \cdot x^{7} \cdot x^{7} \\
&=8 x^{21} \\
& \operatorname{Know}^{2} \\
& x^{0}=1 \\
& 5^{0}=1(-7)^{0}=1
\end{aligned}
$$

old.

$$
\begin{aligned}
& \text { subtract } \\
& \text { exponents. }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{x^{5}}{x^{3}}=x^{2} \\
& \begin{array}{l}
\frac{x^{5}}{x^{5}}=1 \\
>x^{5-5}=\substack{x \\
x \neq 0}
\end{array}
\end{aligned}
$$

$x^{3} \cdot x^{4}=x^{7}$ add exponents $\quad c_{a_{\text {stare }}}$ $\left(x^{3}\right)^{4}=x^{12} \quad$ multiply exponents.

$$
\frac{\left(x^{3}\right)^{4} \cdot x^{3}}{x^{12} \cdot x^{3}} \begin{gathered}
x^{15}
\end{gathered}
$$

$$
\left(\frac{a^{2}}{b^{4}}\right)^{10}=\frac{a^{20}}{b^{40}}
$$

$$
x^{-3}=\frac{1}{x^{3}}
$$

\Downarrow

$$
x^{-3}
$$

$\frac{x^{-3}}{1}$ move to other place in fraction

$$
\frac{x^{-4}}{b^{-7}}=\frac{b^{7}}{x^{4}}
$$

$$
\begin{aligned}
\frac{3 a^{-7} b^{4}}{b^{-3} a^{10}} & =\frac{3 b^{4} b^{3}}{a^{7} a^{10}} \\
& =\frac{3 b^{7}}{a^{17}}
\end{aligned}
$$

Radicals

$$
\begin{aligned}
\sqrt{12} & =\sqrt{4} \cdot \sqrt{3} \\
& =2 \sqrt{3}
\end{aligned}
$$

$$
4=2^{2}
$$

$$
\sqrt{4}=\sqrt{2^{2}}
$$

$$
\begin{aligned}
\sqrt{75} & =\sqrt{25} \cdot \sqrt{3} \\
& =5 \sqrt{3}
\end{aligned}
$$

$\sqrt{(2.2)(2.2) \cdot 5 \cdot 5 \cdot(3.3)}$

$$
\begin{gathered}
2 \cdot 2 \cdot 5 \cdot 3 \sqrt{5} \\
60 \sqrt{5}
\end{gathered}
$$

$$
\begin{aligned}
\sqrt[3]{8} & =\sqrt[3]{2 \cdot 2 \cdot 2}=2 \\
\sqrt[5]{64} & =\sqrt[5]{2 \cdot 2 \cdot 2 \cdot 2 \cdot 2)} 2 \\
& =2 \sqrt[5]{2}
\end{aligned}
$$

$$
\begin{array}{ll}
2^{3}=8 \\
2^{4}=16 & 2^{5}=32 \\
2^{6}=64
\end{array} \rightarrow 4^{3}=64 \rightarrow 8^{2}=64
$$

$$
\begin{aligned}
& \sqrt[5]{64}=(64)^{1 / 5} \\
&=(32 \cdot 2)^{1 / 5} \\
&=\left(2^{5} \cdot 2\right)^{1 / 5} \\
&=\left(2^{5}\right)^{1 / 5} \cdot 2^{1 / 5} \\
& 2 \cdot \sqrt[5]{2 \cdot 2 \cdot 2 \cdot 2 \cdot 2} \cdot \sqrt[5]{2}
\end{aligned}
$$

$$
\begin{aligned}
& 24 \\
& 2 \sqrt{6}
\end{aligned}
$$

Vibx

$$
\begin{aligned}
\sqrt[3]{x^{17}} & \sqrt[3]{x^{15} \cdot x^{2}} \\
& x^{5} \sqrt[3]{x^{2}}
\end{aligned}
$$

$$
\frac{\sqrt{\begin{array}{l}
2(32 \\
2(16 \\
2(8) \\
2\left(\frac{4}{2}\right. \\
2 \frac{4}{3}^{2}
\end{array}} \sqrt[{\sqrt[5]{32 a^{40}}}]{\sqrt[5]{32} \sqrt[5]{a^{40}}} \begin{array}{l}
\left(\sqrt[5]{82} a^{40}\right)^{2 / 5}
\end{array}\left(\sqrt[5]{32 a^{40}}\right)^{2}}{(\sqrt{2}}
$$

$$
\begin{gathered}
\left(2 a^{8}\right)^{2} \\
\sqrt[5]{a^{16}} \\
\sqrt[5]{a^{7}}=a^{1} \sqrt[5]{a^{2}} \\
\sqrt[3]{x^{10}}=x^{3} \sqrt[3]{x^{1}}
\end{gathered}
$$

