Graphing quadratics - vertex form graphing form.

A.
$$Y = \alpha \times 2$$
 quadratic

Coefficient on x2 determins

Shapel concavity.

a > 0 up a < 0 down

| a| >1 -> skinny; Vertical stretch

ocla|c| -> fat; Vertical compression

0 < |a| < | -> +a

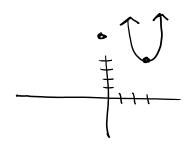
 $y = -3x^2$

Sketch

B. Vartex. (h,k)

Starting point of parabola.

graphing form:


 $y = a \left(x - h \right)^2 + k$. Vertex: (h k)

Vertex: (K) a is the wefficient

determines shape/concavity.

A the h value is opposite Sign from the value inside parenthesis with x.

$$\Sigma X!$$
 $y = 1(X-3)^{2}+4$

- describe. concavel shape standard, up

 Vertex.


 (3,4)
 - - · Minimum value, min = 4

 - Range: y≥4
 Domain: TR + true for whole unit.

$$2x'$$
 $g(x) = -2(x+1)^2 + 3$

a = -2 down/sking

Vertex (-1,3)

Max value @ 3

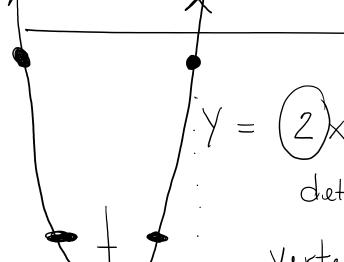
$$Y = \frac{1}{1} \left(X + 0 \right)^2 + 0$$

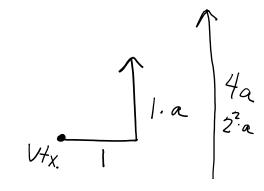
$$\mathcal{E}_{X}: \qquad h(X) = -\underline{\underline{5}}(x+6)^2 + \cdots$$

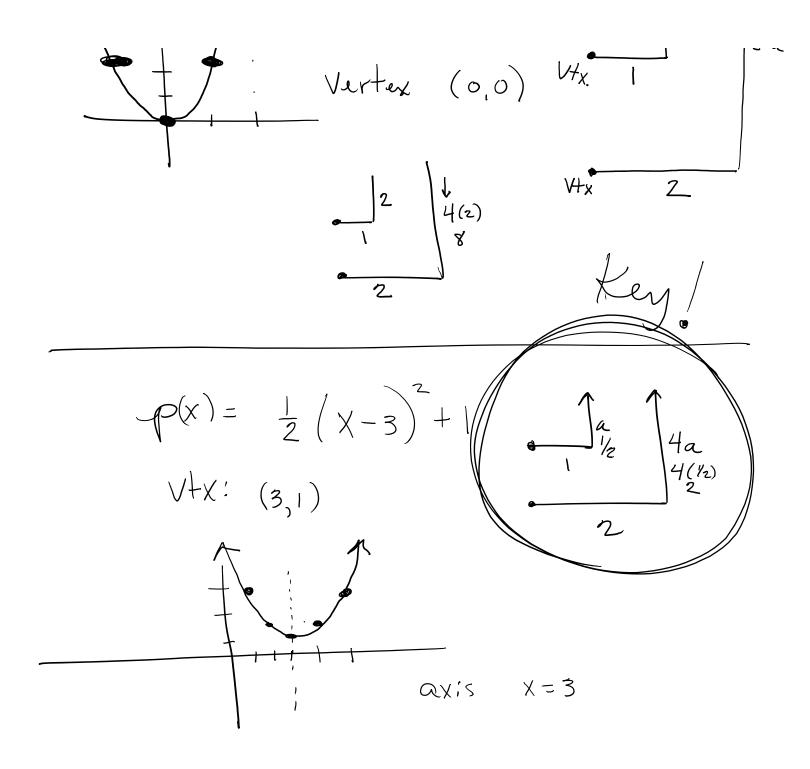
Range: y < 0 Vertex (-4,0)
Domain R down/skinny

max, y=0

$$\mathcal{E}_{\mathsf{X}}$$

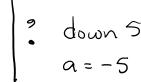

$$P(X) = -3 \times \frac{2}{3}$$


Vertex (0,0)


down / skinny

Domain : TR

max value @ O.



1. Vertex
$$(-1, 4)$$

 $1 = -5(X+1) + 4$? down 5

$$\sqrt{1 - 5(X+1)^2 + 4}$$
 ? down 5 $a = -5$

