Graphing quadratics
Standard Form
graphing:

$$
y=3(x-2)^{2}+5
$$

ute $(2,5)$

Standard form

$$
y=a x^{2}+b x+c
$$

Ex.)

$$
y=\frac{-3 x^{2}}{a}+\frac{12 x}{b}+9
$$

$$
a=-3
$$

- aIs

$$
x=-\frac{b}{2 a} \frac{-12}{2(-3)}
$$

- Vertex $(2, \text { plug })^{6}$

$$
\frac{-12}{-6}=2
$$

- a same
- concavity down
- y-int
- graph. *
- Domain \mathbb{R}
- Range $y \leq 21$

$$
\begin{aligned}
& -3 x^{2}+12 x+9 y-\operatorname{in} t \\
& -3(2)^{2}+12(2)+9
\end{aligned}
$$

- (max) / min

$$
\begin{aligned}
& 12+9 \\
& 21 \\
& -6 x^{2}+12 x+9
\end{aligned}
$$

$(0,9)$
$(x \cdot)$

$$
f(x)=-x^{2}+2 x-4
$$

$-b \quad-(2)=-1 \quad b=2 \quad c=-4$
-ats $\quad-\frac{b}{2 a} \frac{-(2)}{2(-1)}=1$

- Vertex. $(1,-3)$
- y-int $-4-(1)^{2}+2(1)-4$
$\begin{aligned} & \text { - Rang } \\ & \text { - graph } \\ & \text { - } \\ & \text { - }\end{aligned} \sqrt{2} \leq-3$ $-1+2-4$
$1-4$ $1-4$
-3 maximin what? - 3
- Concavity

$$
\begin{gathered}
\text { Ex.) } a / s, x=1 \quad g(x)=2 x^{2}-4 x+7 \\
\bullet V_{\text {vertex }} \\
\frac{-b}{2 a}=\frac{-(-4)}{2(2)}=1 \\
2(1,5)-4(1)+7 \\
2-4+7 \\
-2+7 \\
5
\end{gathered}
$$

