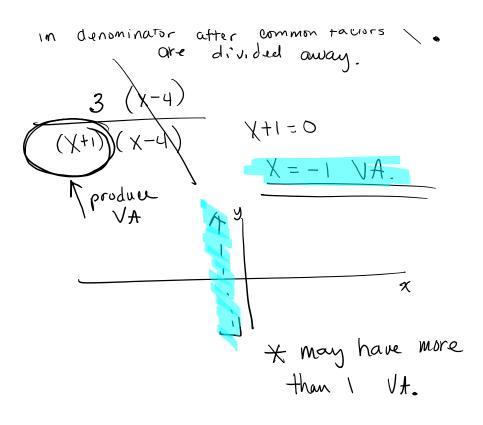

Graphing Rational Expressions

3. Analyse the function - graph.

1. Factor everything

 $Ex: \frac{3(x-u)}{(x+1)(x-u)}$

· Holes:


holes come from common Factors.

X-4 a common factor-

hole @ X = 4

· VA. vertical Asymptotes.

VA come From all factors left over in denominator after common factors are divided away.

. HA. Horizontal Asymptote.

$$\frac{A \times^{m}}{B \times^{n}} \sim \frac{A \times^{m}}{A \times A}$$

$$\frac{A x^{m}}{B x^{n}} = \frac{5(x-3)(x+z)}{(x-3)(x+1)(x+1)} = \frac{5x^{1}}{1 + x^{2}}$$

* • m < n HA 4= 0

* m = n HA $\gamma = \frac{A}{B}$

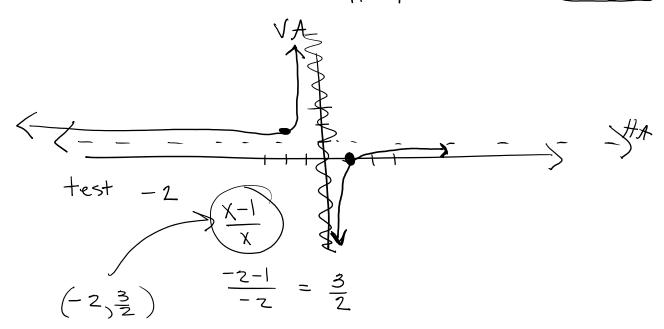
- · Common Sense, pick test points to draw hyperbolas.

$$\mathcal{E}_{X}$$
: $f(x) = \frac{X-1}{X}$

1. Factor. 1

2. holes: None

• y - int $\frac{o-1}{o}$ No can do no y-int.


• V A :

Set denominator factor = 0
$$\frac{X=0}{VA}$$

· Zeros:

$$X-1=0$$

 $X=1$ is X -intercept

$$m = 1$$
 $m = n$
 $M =$

$$f(x) = \frac{-3x+3}{x+1}$$

1. Factor:
$$\frac{-3(x-i)}{x+1}$$

$$\frac{1}{8} = 3 \text{ HA}$$

$$\sqrt{A}$$
: $x+1=0 \Rightarrow x=-1 \ VA$

y-int: plug in 0.
$$\frac{-3(0-1)}{0+1} = 3$$

$$\frac{1}{1}$$

$$\frac{1$$

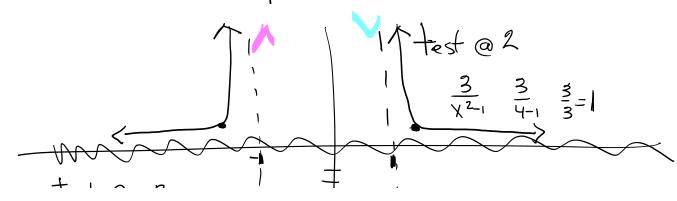
$$\forall x : \frac{\chi^2 + \chi - 2}{\chi^2 - 5\chi + 4} = \frac{(\chi + 2)(\chi - 1)}{(\chi - 4)(\chi - 1)}$$
hole @ $\chi = 1$

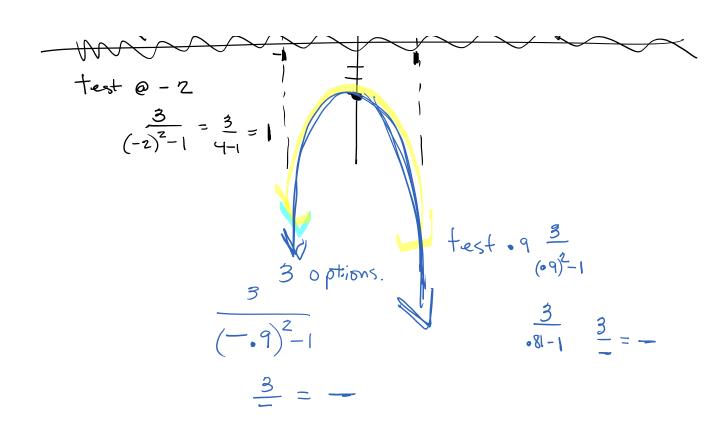
$$HA: \frac{A}{B} = \frac{1}{1} = 1$$
 smu $m=n$

$$VA: x-4=0 = 4$$

$$y - int = \frac{2}{4} = -\frac{1}{2}$$

$$X-int X+2=0 => X=-2$$


test
$$x=5$$
 $\frac{x+2}{x-4}$ $\frac{1}{1}$


$$\mathcal{E}_{X} \qquad \frac{3}{X^{2}-1} \qquad \frac{3}{(X^{-1})(X^{+1})}$$

$$X=1$$
 and $X=-1$

Zero! none

$$y$$
-int $\frac{3}{-1}$ $-\frac{3}{-1}$

$$f(x) = \frac{x-1}{\chi^2 - 4}$$

$$\# 1.$$
 $\# A.$ $\# X = X^2 + 8x + 12$

Slant Y=mx+b

X+3 Slant Y=mx+b long division Slant asymptote X+5 $\frac{\chi^2 + 8\chi + 12}{\chi + 3}$ $\frac{(\chi+z)(\chi+\zeta_0)}{\chi+3}$ $\sqrt{A} : \chi = -3$ Zeros X=-6 X=-2