

* is dividend (inside)
in Standard form wi no missing terms

$$
\frac{2 x+3 R 1}{2 x+3+\frac{1}{x+2}}
$$

$$
\left(4 x^{2}+3 x^{3}+10\right) \div(x-2)
$$

$$
\frac{(x+4)(x-4)}{\frac{a^{2}-25}{(a+5)(a-5)}}
$$

sum of cubes

$$
\begin{aligned}
& (1 s t)^{3}+(2 n d)^{3}=(1 s t+2 n d)\left(1 s t-1 s t \cdot 2 n d+2 n s^{2}\right) \\
& (x)^{3}+(y)^{3} \\
& x^{3}+y^{3}
\end{aligned}
$$

$$
\begin{aligned}
x^{3} & -x^{2} y+x y^{2} \\
& +y x^{2}-y^{2} x+y^{3}
\end{aligned}
$$

$$
a^{3^{\downarrow} \pm} b^{3}=(a \pm b)\left(a^{2}+a b+b^{2}\right)
$$

$$
1^{3}=1
$$

$$
2^{3}=8 *
$$

$$
3^{3}=27 * \quad 6^{3}=216
$$

$$
L_{2}^{3}=64 *
$$

$$
10^{3}=1000
$$

Factor:

$$
8-x^{3}
$$

$$
\begin{aligned}
& a^{3}+b^{3} \\
& \left.\begin{array}{l}
a+b^{3} \\
a^{3}-b^{3}
\end{array}\right\} \Rightarrow\left(a\binom{\text { (ac }}{\text { sian }}\left(a^{2}\binom{\text { chankx }}{\text { Sign }} a b+b^{2}\right)\right.
\end{aligned}
$$

$$
(2)^{3}-(x)^{3} \frac{\text { keep change } t}{(2-x)\left(4+2 x+x^{2}\right)}
$$

LD: 6.3: 2, 13, 15, 18
Factoring $6.45,6,12,14,20,21,28,30$

