Recap of Logs so far.

$$
\begin{aligned}
& 2^{4}=16 \\
& 2^{x}=43
\end{aligned}
$$

choose
$\log _{2}$ both

$X=\frac{\log 43}{\log 2}$

$$
x=5.4263
$$

$$
\begin{aligned}
& -\log _{b} b=1 \\
& \cdot \log _{b} 2^{x}= \\
& x \cdot \log _{b} 2
\end{aligned}
$$

Change of base

$$
\log _{b} A=\frac{\log A}{\log B}
$$

$$
3^{x}=951
$$

$$
\begin{aligned}
\log _{3} 3^{x} & =\log _{3} 951 \\
x & =\frac{\log 951}{\log 3} \\
x & =6.2420
\end{aligned}
$$

$$
\begin{aligned}
17 & =.02^{x} \\
\log _{.02} 17 & =\log _{.02} 02^{x} \\
\frac{\log 17}{\log .02} & =x \\
-0.7242 & =x
\end{aligned}
$$

$$
\begin{aligned}
3^{x+7} & =\left(3^{3}\right)^{3 x-4} \\
3^{x+7} & =3^{9 x-12} \\
x+7 & =9 x-12 \\
19 & =8 x \\
\frac{19}{8} & =x
\end{aligned}
$$

$$
\begin{aligned}
4^{7 x} & =128^{5 x+6} \\
\left(2^{2}\right)^{7 x} & =\left(2^{7}\right)^{5 x+6} \\
14 x & =35 x+42 \\
-42 & =21 x \\
-2 & =x
\end{aligned}
$$

$$
\begin{aligned}
5 & =18^{x} \\
\log _{18} 5 & =\log 18^{x}
\end{aligned}
$$

$$
\begin{aligned}
& e \approx 2.718 \\
& e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n} \\
& \log _{e}=\pi n \\
& \text { Laton } \\
& \log \text { naturel } \\
& \ln e=\log _{\text {e bax }} e^{\text {answer }}=, l_{\text {exponat }} \\
& |n|=\log _{e} 1=0 \\
& \ln 7+\ln 10=\ln 70 \\
& \text { inke } 1 \text { loofe }=1 \\
& \log _{e} 7=\ln 7
\end{aligned}
$$

$$
B \frac{\log 7}{\log e}
$$

Solve:

$$
\frac{1}{2}=e^{.02 t}
$$

In on both sides

$$
\begin{aligned}
\ln \left(\frac{1}{2}\right) & =\ln / e^{.02 t} \\
\frac{\ln (.5)}{.02} & =\frac{.02 t}{.02} \\
-34.6574 & =t
\end{aligned}
$$

$$
\begin{aligned}
507 & =e^{.15 t} \\
\ln & \frac{5=3.2^{5 t}}{3} \\
\ln 5.7 & =1 e^{.15 t} \\
\ln 5.7 & =0.15 t \\
\frac{\ln 5.7}{0.5} & =t \\
t & =11.6031 \mathrm{yRs}
\end{aligned}
$$

growth

$$
\begin{array}{ll}
A=P(1+r)^{t} & A=P(1-r)^{t}
\end{array}
$$

guitar

$$
\begin{gathered}
60,000=12,000(1+.14)^{t} \\
5=12,000 \\
\log _{1.14} 5=\log _{1.14} \cdot / 14^{t} \\
\frac{\log 5}{\log 1.14}=t \\
12.2831 \text { YRS }
\end{gathered}
$$

Car 28,000
depreciates

$$
A=P(1-r)^{t} \quad 5,000=28,000(1-.095)^{t}
$$

Car 20,000
depreciates

$$
A=P(1-r)^{t} \quad 10,000=20,000(1-.15)^{t}
$$

Doubling Function

$$
\begin{aligned}
& y=n 2^{t} \\
& q \quad \uparrow_{\text {double }} \\
& \text { start }
\end{aligned}
$$

$$
\begin{aligned}
& Y=1502^{12} P_{614,400}^{P r m A 5} \\
& 1,500,000=150 \cdot 2^{t}
\end{aligned}
$$

Compound Interest

$$
\begin{gathered}
A=P\left(1+\frac{r}{n}\right)^{n t} \\
A=5,000\left(1+\frac{.05}{4}\right)^{4(5)} \int_{10,0}
\end{gathered}
$$

$$
n=4 \text { quarterly }
$$

$$
n=52 \text { weekly }
$$

$$
n=12 \text { monthly }
$$

$$
n=365 \text { daily }
$$

$$
10,000=5000\left(1+\frac{.05}{4}\right)^{40 t}
$$

Compound Continuousty

$$
\begin{aligned}
& A=P e^{r t} \quad \begin{array}{l}
y=n e^{k t} \\
\text { science }
\end{array} \\
& A=1,000 e^{(.05) 10} 15 t!
\end{aligned}
$$

