Solve by Factoring.

- Solve by factoring
- Find the Roots
- Find the zeros
- Find the x inter cepts
- Tell me where the parabola crosses the x-axis

Solve:

$$
\begin{aligned}
& { }_{a_{c_{x_{0}}}} x^{2}+5 x+4=0 \\
& \left.\begin{array}{c}
(x+1)(x+4)=0 \\
\downarrow \\
x+1=0 \quad \text { OR } \quad x+4=0
\end{array}\right\} \begin{array}{l}
\text { zero } \\
\text { Product } \\
\text { Property }
\end{array} \\
& x=-1 \\
& x=-4
\end{aligned}
$$

$$
\begin{array}{r}
\hat{a}_{a_{\text {co }}^{\perp}}\left(\begin{array}{l}
x^{2}+6 x
\end{array}\right)=0 \\
x(x+6)=0 \\
x=0 \quad \text { or } x+6=0 \\
x=-6
\end{array}
$$

Solve by factoring.

$$
\begin{aligned}
& x^{2}-25=0 \\
& (x+5)(x-5)=0 \\
& x+5=0 \quad \text { OR } \quad x-5=0 \\
& x=-5 \quad x=5
\end{aligned}
$$

Solve:

$$
\begin{aligned}
& 2 x^{2}-\underline{-5 x}-3=0 \\
& {\left[2 x^{2}-\underline{-6 x]+1 x}-3\right]} \\
& 2 x(x-3)+1(x-3) \\
& (x-3)(2 x+1)
\end{aligned}
$$

Solve by factoring

$$
\begin{aligned}
& x^{2}+6 x+8=0 \\
& (x+z)(x+4)=0
\end{aligned}
$$

$$
x+2=0 \quad x+4=0
$$

$$
x=-2 \quad x=-4
$$

$$
\begin{array}{r}
x^{2}-3 x+2=12 \\
\text { polynomial } x^{2}-3 x \stackrel{\downarrow}{-} 10=0
\end{array}
$$

$$
\operatorname{factors}(x-5)(x+2)=0 \frac{\frac{10}{1 \cdot 10}}{2.5}
$$

Roots \square
polynomial
Solvent by factoring

$$
\Longrightarrow \text { Roots }
$$

Roots \Longrightarrow Polynomial.

3 found 2 Roots in the woods.
The roots are 6 and -2 .
To which polynomial do these roots belong?
roots \Longrightarrow factors \Longrightarrow polynomial

$$
\begin{aligned}
6 & \Rightarrow(x-6) \\
-2 & \Longrightarrow(x+2)^{3} \text { factors }
\end{aligned}
$$

root $\frac{1}{3} \Longrightarrow\left(x-\frac{1}{3}\right)$
OR

$$
\begin{aligned}
& -18)=0 \\
& x=\frac{1}{3}
\end{aligned}
$$

