Summation
A. $\quad \int x d x=\frac{1}{2} x^{2}$

Antiderivative

1. Summation w/ left endpoints

left end points 2

$$
\begin{array}{ll}
2 & 2 \\
2+\frac{2}{3} & \frac{8}{3} \\
2+\frac{2}{3}(2) & \frac{10}{3}
\end{array}
$$

$$
\begin{aligned}
& \Delta x=\frac{b-a}{n} \\
& \text { Rich: } x_{i}=x_{0}+\Delta x \cdot i \\
& \text { left } x_{i}=x_{0}+\Delta x(i-1)
\end{aligned}
$$

Area using 3 Rectangles left endpoints on $\int_{2}^{4} f(x) d x$

upper Sum

$$
\begin{aligned}
& \sum_{i=1}^{1} i \\
& \sum_{i=1}^{10} i^{2} \quad \text { P } 260 \\
& \sum_{i=1}^{15} i^{2}+i \\
& \sum_{i=1}^{n} c=c \cdot n \quad \sum_{i=1}^{n} i^{2}=\frac{n(n+\lambda)(2 n+1)}{6} \\
& \sum_{i=1}^{n} i=\frac{n(n+1)}{2} \sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4} \\
& \text { Ex: } \sum_{i=1}^{n} \frac{i+1}{n^{2}} \\
& \frac{1}{n^{2}} \sum_{i=1}^{n}(i+1) \\
& \frac{1}{n^{2}}\left[\sum_{i=1}^{n} i+\sum_{i=1}^{n} 1\right] \\
& \frac{1}{n^{2}}\left[\frac{n(n+1)}{2}+n\right] \\
& \frac{1}{n^{2}}\left[\frac{n^{2}+n}{2}+n\right] \\
& \frac{1}{n^{2}}\left[\frac{n^{2}}{2}+\frac{n}{2}+n\right] \\
& \frac{n^{2}}{2 n^{2}}+\frac{n}{2 n^{2}}+\frac{n}{n^{2}} \\
& \frac{n}{n} \frac{1}{2}+\frac{1}{2 n}+\frac{1}{n^{2}} \frac{2}{2} \\
& \frac{n+3}{2 n} * \\
& 4.211-29 \text { odd }
\end{aligned}
$$

