Synthetic Division
Synthetic Substitution

LD:

$$
\left(3 x^{3}+4 x^{2}+10\right) \div(x-2)
$$

Because the divisor is
linear (exponen tl)
we can use Synthetic
A. Use all coefficients (inclucle O^{\prime}) of dividend

$$
\begin{array}{llll}
3 & 4 & 0 & 10
\end{array}
$$

3. weird division sign.

$$
\begin{array}{llll}
3 & 4 & 0 & 10
\end{array}
$$

c. change sign of a in $(x-a)$ divisor.

$x^{2} \times C R$

$$
3 x^{2}+10 x+20 R 50
$$

$$
\begin{gathered}
\left(\begin{array}{cc}
\left.x^{2}+5 x-28\right) \div(x) \\
3 \left\lvert\, \begin{array}{ccc}
1 & 5 & -28 \\
\downarrow & 3 & 24
\end{array}\right. \\
\begin{array}{c}
1 \\
x
\end{array} c & -4 \\
x+8 & R
\end{array}\right. \\
=\left\{\begin{array}{l}
\text { Sinci } R=-4, \text { we know } \\
P(3)=-4
\end{array}\right.
\end{gathered}
$$

$$
1 P(3)=-4
$$

- $\left\{\begin{array}{r}a k a: \text { Evaluate } x^{2}+5 x-28 \\ \text { at } x=3 . \\ 9+15-28=-4\end{array}\right.$
$R=0$ means the divisor is a factor.
$R \neq 0$ means the divisor is not a factor
A. $\left(4 x^{2}-12 x-9\right) \div\left(x+\frac{1}{2}\right)$

B . Evaluate P e $x=-1 / 2$
c. is $(x+1 / 2)$ a factor of $4 x^{2}-12 x-9$?
change sian.

A.
$4 x-14 \quad R=-2$
$=\square /-11)$
B. $\quad P(-1 / 2)=-2$
C. No because $R \neq 0$.

Factoring:

1. $\quad x^{2}-y^{2} \Rightarrow(x+y)(x-y)$
2. Quadratic type.

$$
\begin{aligned}
& x^{4}-y^{8} \\
& \left(x^{2}\right)^{2}-\left(y^{4}\right)^{2} \Rightarrow\left(x^{2}+y^{4}\right)\left(x^{2}-y^{4}\right) \\
& \qquad\left(x^{2}+y^{4}\right)\left(x+y^{2}\right)\left(x-y^{2}\right)
\end{aligned}
$$

3.) $3 x^{4}-26 x^{2}-9 \quad$ quadratic

$$
3 a^{2}-26 a-9
$$

$$
\begin{array}{r}
\text { grouping } \begin{array}{l}
\left\{\begin{array} { l }
{ \frac { 3 a ^ { 2 } + 1 a - 2 7 a - 9 } { a (3 a + 1) - 9 (3 a + 1) } } \\
{ (3 a + 1) (a - 9) \Longrightarrow (3 x ^ { 2 } + 1) (x ^ { 2 } - 9) }
\end{array} \left(\begin{array}{l}
\left(3 x^{2}+1\right)(x+3)(x-3)
\end{array}\right.\right. \\
\\
a^{3}+b^{3} \Rightarrow(a+b)\left(a^{2}-a b+b^{2}\right) \\
x^{3}-y^{3} \Longrightarrow(x-y)\left(x^{2}+x y+y^{2}\right)
\end{array} \\
\left\{\begin{array}{l}
\text { SD: 6.3: } 19-24 \\
\text { SS: 6.3: } 8-11 ; 25-28 \\
\text { Factors? } 6.4: 17-19,41,42 \\
\text { Factor worksheet. }
\end{array}\right.
\end{array}
$$

