Turning standard form into graphing using CTS

Complete the square

Back ground:

Background.

Factor

$$
\begin{array}{cc}
x^{2}-10 x+25 & x^{2}-12 x+36 \\
(x-5)(x-5) & (x-6)(x-6) \\
(x-5)^{2} & (x-6)^{2}
\end{array}
$$

$$
\begin{aligned}
& x^{2}+\begin{array}{r}
+ \\
2 x+1 \\
\hline
\end{array} \\
& (x+1)^{2} \text { lovely }
\end{aligned}
$$

perfect square trinomial.
not perfect

$$
\frac{x^{2}+3 x+2}{(x+2)(x+1)} \text { no help }
$$

Make it happen.

$$
y=x^{2}-10 x+25
$$

work

$$
\begin{aligned}
& y=x^{2}-10 x \text { what }+2
\end{aligned}
$$

$$
\begin{aligned}
& y=(x-5)^{2}-23
\end{aligned}
$$

ε_{x}

$$
\begin{gathered}
y=x^{2}-6 x+1 \\
x^{2}-6 x \\
+1+9 \\
y=(x-3)^{2}-8
\end{gathered}
$$

Ex:

$$
\begin{gathered}
y=x^{2}+2 x-9 \\
y=(x+1)^{2}-10
\end{gathered}
$$

$$
\begin{gathered}
y=x^{2}-8 x+1 \\
y=(x-4)_{\substack{\text { squarel } \\
\text { half } \\
1}}^{2}-15
\end{gathered}
$$

$$
\begin{aligned}
& y=x^{2}+12 x-10-36 \\
& y=(x+6)^{2}-46
\end{aligned}
$$

(1) half
(2) Squared

$$
y=x^{2}+1 x+6
$$

(3)combine

$$
y=(x+1 / 2)^{2}+5 \frac{3}{4}
$$

$$
y=x^{2}+20 x+14
$$

$$
\begin{gathered}
x^{2}+20 x \jmath^{+100}+14-100 \\
y=(x+10)^{2}-86
\end{gathered}
$$

